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An analytical method is presented which enables the elastic constants of the fibres in 
a unidirectional composite to be estimated from a knowledge of the elastic constants of the 
composite and the matrix resin. Results are presented for polyethylene fibre/epoxy resin and 
carbon fibre/epoxy resin composites, and it is shown that the predicted fibre constants are, 
in both cases, close to those obtained from other methods. 

1. I n t r o d u c t i o n  
The calculation of the elastic constants of a fibre- 
reinforced composite is a very familiar exercise which 
is well documented in the literature (see, for example, 
[1, 2]). Research by the present authors and their 
colleagues has addressed this subject in some detail 
[3, 4] with particular regard to recent attemPts to 
obtain more accurate theoretical estimates using ana- 
lytical procedures E5], simple bounding methods [-6] 
or finite element analyses [7]. It has become apparent 
from these recent researches that if such new theoret- 
ical techniques are to be applied effectively, it will be 
necessary to have accurate values for the elastic con- 
stants of the fibres. It is evident that for many of the 
composite systems which are of great interest, e.g. 
those involving carbon fibres, well authenticated accu- 
rate values do not exist. 

One method reported in the literature [-8] for ob- 
taining the elastic constants of a carbon fibre involves 
manufacturing a group of unidirectional composites 
with different fibre volume fractions. The elastic prop- 
erties of the composites are then measured, and the 
fibre properties obtained by plotting the composite 
results and extrapolating to 100% fibre volume frac- 
tion. To obtain accurate values for the fibre elastic 
constants by this method obviously requires a signifi- 
cant number of samples to be produced over a large 
range of fibre volume fractions. 

The aim of the present work was to propose a new 
method for obtaining the fibre elastic constants from 
measurements of the elastic constants of a unidirec- 
tional composite. By using our analytical techniques 
for describing the elastic constants of a composite, it is, 
in principle, possible to determine the fibre elastic 
constants from a single composite sample. 

In this paper it will be shown that the fibre proper- 
ties can be determined with some accuracy, and results 
will be presented for polyethylene fibre/epoxy com- 
posites which have led to a set of estimate elastic 
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constants for the polyethylene fibres, and a single 
carbon fibre epoxy composite, from which an estimate 
of the carbon fibre properties have been obtained. 

2. Theory 
2.1. Unidirectional fibre composites 
Following the procedure adopted in a previous publi- 
cation [6], the elastic constants are calculated on the 
basis of both series-parallel and parallel-series mod- 
els. For  the calculation of the extensional elastic con- 
stants, the models are shown schematically in Fig. 1 
and 2, and for the shear constants in Figs 3 and 4. In 
our previous publication [6], bounds for the elastic 
constants were determined starting with the elastic 
properties of the matrix and the fibres, for a given 
volume fraction of the fibres. It was found that in most 
instances the calculated bounds are very close. This 
suggested that it would be reasonable to attempt to 
invert the direction of the calculations, and estimate 
the fibre elastic constants on the basis that the cal- 
culated bounds are made as close as possible to the 
measured elastic constants of the composite by opti- 
mizing the values of the elastic constants of the fibres 
to achieve the closest fit. 

It is appropriate to separate the bounds calcu- 
lations for the extensional and shear elastic constants. 

2. 1. 1. Extensional elastic constants 
The theoretical calculations for the extensional elastic 
constants involve four sets of equations describing 
four cases which are illustrated schematically in Figs 
1 and 2. These four cases are: 

Case i Series-paralM situation for loading paralM to 
the fibre direction (Fig. 1). 

Case 2 Series-parallel for loading perpendicular to 
the fibre direction (Fig. 1). 
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Figure 1 The series-parallel situation for extensional loading paral- 
lel and perpendicular to the fibre direction. 
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Figure 3 The series-parallel situation for shear loading parallel to 
the fibre direction. 

oi 
Omr v 

Figure 2 The paral!el-series situation for extensional loading paral- 
lel and perpendicular to the fibre direction. 

Case 3 Parallel-series situation for loading parallel to 
the fibre direction (Fig. 2). 

Case 4 Parallel-series for loading perpendicular to 
the fibre direction (Fig. 2). 

The relevant equations for these four cases will now be 
given. 

Case 1. The equilibrium conditions for unit 2.I.1.1. 

stress applied in the fibre direction are 

(1 - - f ~ ) o -  m +fOre + f ~ ( 1  - - f � 8 9  = 1 (la) 

(1 --f~)c~o + f ~ a  = 0 (lb) 

f + ~ p  + (1 --f~)Cyq = 0 (lc) 

where CYm, err and (3" r are the stresses in the fibre direc- 
tion and cyc, ca, Cyp and cyq are stresses in the trans- 
verse directions, as shown in Fig. 1: f is the fibre 
volume fraction. 

The strains g33 and ~13, the strains in the fibre 
direction 3 and in the transverse direction 1, respec- 

Figure 4 The parallel-series situation for shear loading perpendicu- 
lar to the fibre direction. 

tively, for unit stress applied in the fibre direction 3, 
are related to the elastic constants Era, vm of the matrix 
by the four equations 

(Ym Vm 
g33 = (Yc (2a) 

Em Em 

(ffc Vm 
g23 --  O-m (2b) 

Em Em 

/]33 --  
(3" r V m Vm 

O" d - -  ~ '~  O'q (2c) 
Em Em 

and 

3 grn (Yd - -  E m  (Yr 

- -  (1 - - f ~ - )  ( ~ m  O'm q- ~m O'c) (2d) 

5880 



Three further equations, based on compatibility of 
strains, but involving the elastic constants of the fibre 
can be obtained. 

E33 = $330" f 4- S13(O d 4- O'p) (3a) 

g21 =f�89 4- SllO-d 4- S12(Yp) 

+ (1 - - f~)  T-1 (CYH -- VmO" q - -  VmO'r) 
15 m 

(7c) 

S130"f 4- SILO" p 4- S12(Yd 

1 
-- Em (Oq --  VmO" d -- VmOr) (3b) 

E23 =f~-(S13(Yf 4- SllO'd 4- S12Op) 

1 
4- (1 - f ~ )  ~m ((Yd -- V.mOq -- VmO~) 

(3c) 

where the fibre elastic compliance matrix is defined by 

0 0 0 

0 0 0 

0 0 0 

s44 0 0 

0 s44 0 

0 0 2(sll - s12) 

as the fibre axis. 

2.1.1.3. Case 3. For the parallel-series situation the 
equilibrium equations for unit stress applied in the 
fibre direction are 

Sl l  $12 S13 

S12 Sl l  S13 

S13 $13 $33 

0 0 0 

0 0 0 

0 0 0 

with the 3 direction 

(1 - f ~ ) o -  m 4-fo'f + f~ (1  --f~-)O~ = 1 (8a) 

(1 - - f})or  4 - f } o "  d = 0 (8b) 

f~op  4- (1 - - f � 8 9  = 0 (8C) 

where Ore, ~Sf, ~r, etc., are the stresses shown in Fig. 1, 
but for this different bound will not be identical to 
those determined for Case 1 above. 

The strains ~33 and ~3 for this bound are related to 
the elastic constants of the matrix by the equations 

(4) Om Vm 
E33 -- E m Em Cyq (9a) 

(Yq Vm 
El3 -- O m (9b) 

Em Em 

2.1.1.2. Case 2. The equilibrium equations for unit 
stress applied in the transverse direction are 

(1 - f { ) e r  m + f o f  +f~-(1 - f �89  r = 0 (5a) 

(1 - f ~ ) o r  +f-~od = 0 (5b) 

f~c~p + (1 -f~)Cyq = I (5c) 

The strains ~3 ~ and g21, the strains in the fibre direc- 
tion 3 and in the transverse direction 2, respectively, 
for unit stress applied in the transverse direction 1, are 
related to the elastic constants Era, Vm of the matrix by 
the four equations 

Om Vm V m 
g31 -- O'c 

E m E m E~. 

O" r V m Vm 
E31 -- Od -- ~ CYq 

Em Em 

~c Vm Vm 
~21 - ~ m  (6c) 

Em Em Em 

_ f�89 Vm Vm ) 
e l l - -  ~Em Em Od --  g-~m O'r 

+ ( 1 - f ~ t  Ore-- Oo 

' (6d) 

As before, three further equations involving the 
elastic constants of the fibre can be obtained 

E31 = $33 O'f 4- S13(Od -]- Op) 

S13Of 4- S l lOp  4- S12Od 

1 
-- Em ((yq --  Vm~Yd --  VmOr) 

Or Vm Vm 
~33 -- Oc --  ~ Op (%) 

Em s 

~23 = f ~ ( ~  m Vm Vm ) 
gm G'r -- E m  Op 

)  96, 
- -  Om -~- Emm O q  

The three further equations, based on compatibility 
of strains are now 

a33 = s33of + S13(Od + qp) (10a) 

S13Of 4- 811 Off 4- S12(Sp 
(6a) 

1 
= E~ ((~c - vm O ' p  - -  VmOr) (10b) 

(6b) 

~23 =f~(s13crf 4- SllO'p 4- S12(Yd) 

1 
+ (1 -f~)Emm ((yp --  VmO'c --  VmOr) (I0C) 

2.1.1.4. Case 4. The equilibrium equations for the 
parallel-series case where unit stress is applied in the 
transverse direction are 

(1 - f �89  m 4-fof + f~(1  - f ~ - ) %  = 0 ( l la)  

(1 -f~-)(Yc +f~-Od = 0 (l ib) 

f � 8 9  4- (1 - - f l ) C r q  = 1 (llc) 

(7a) In this case, the strains el i ,  ~21 and a31 are related to 
the elastic constants of the matrix by the equations 

O'q V m 
(7b) ell -- O- m (12a) 

Em Em 
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~2~ = f � 8 9  ~ Vm Vm ) 
g m  O'p - -  Emm (~r 

- -  O'm -~- E m  O'q (12b) 

(~m Vm 
g31 -- Em Em O'q (12c) 

(~r Vm Vm 
831 - -  Em Em c~c - ~ ~p (12d) 

and the three final equations, again based on compati- 
bility of strains are 

811 =f �89  -]- $110"p + $12~d) 

1 
+(1 - f ' ) ~ m m ( %  - VmCr~ - VmCXr) (13a) 

S13(Yf ~- S l l  O" d -~- S12C~ p 

1 
= - V m %  - -  

e31 = s3aot + sl3(aa + %) 

(13b) 

(13c) 

2. 1,2. S h e a r  e l a s t i c  c o n s t a n t s  
The series parallel and parallel-series situations for 
the shear elastic constants are shown schematically in 
Figs 3 and 4, respectively. 

For the series-parallel situation (Fig. 3) the equa- 
tion of equilibrium for unit shear stress is 

f ~ c  + (1 - f � 8 9  m = 1 (14) 

and the shear strain in the composite e44 is given by 

E44 ~ Gmm 

z z G'c 
=f~s44~r + (1 - f ~ )  Gm (15) 

where Gm and s44 are the shear modulus of the matrix 
and the shear compliance of the fibre, respectively. 

On the assumption that the shear strain in the 
composite is equal to the shear strain in the matrix, it 
follows that for unit shear stress 

am 1 
1~44 = - -  (16) 

Gm G4 

where G4 is the longitudinal shear modulus of the 
composites. 

Combining Equations 14-16 gives 

1 [ G ,  -- Gm(1 -f~)]f~ 
- -  = G m  z (17) 
S44 Gm(1 - - f~  + f )  -- G,(1 - - f~)  

Similarly for the parallel-series situation shown in 
Fig. 4, the equilibrium equation for unit shear stress is 
given by 

f~-Gc + (1 - - f ~ ) c r  m = 1 (18) 
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In this case, the equation describing compatibility of 
strain relates only to part of the structure and gives 

�89 (Ym 
f g44 - -  - -  $440"c (19) 

Gm 

and the composite shear modulus, G4, is given by 

~ 4  O'm • 1 (20) = f ~ - s  + (1 - f ' ) G - ~  

Combining Equations 18-20 gives 

1 G4(1 - - f*  + f )  -- Gin(1 - f ~ )  
- -  = G m (21)  
$44 FGm - G4(1 - f ~ ) ] f ~  

Equations 17 and 21 are the required bounds for the 
shear compliance of the fibre. 

2.2. Numerical  procedure for calculat ion of 
f ibre elastic constants 

In general, a set of linear algebraic equations may 
have an exact solution only if the number of un- 
knowns is equal to the number of equations, otherwise 
only an approximate solution can be found. One of 
the simplest methods of reaching a solution for such 
a case is to minimize the errors by using the least 
squares method. Considering a set of equations 

aux  ~ + bi = 0 

where i = 1, . . . ,  m, j = 1, . . . ,  n, one finds in general 
that the right-hand side is not equal to zero. To obtain 
the minimum of so-defined errors one can form a sum 
of the squared errors, 

(aux j + bi)(a~kXk + bl) = S 

where i = 1 . . . .  , m; j , k  = 1 . . . .  , n, and find the min- 
imum of this sum by making the first differential equal 
to zero 

eS(xj) = 0 (22) 
axj 

This procedure was used throughout. 
Equations 1 and 2 describing Case 1 above can, in 

principle, be solved to eliminate the seven stresses 
Crm, c~f, etc., because the quantities 833, e13 and •23 
define the strains for unit stress and may therefore be 
regarded equivalently as the corresponding elastic 
compliances of the composite, which are known 
quantities. We are therefore left with Equations 3a-c 
for the four unknowns s33, sl l ,  s12 and s~3, the elastic 
compliances of the fibres. Similar considerations apply 
with regard to Equations 5-7 of Case 2. By taking all 
the six sets of Equations 1-7 together, it is possible to 
adopt a minimization procedure which gives one 
bound for the elastic constants of the fibres. 

An identical procedure can be adopted to obtain the 
parallel-series bound for the elastic constants of the 
fibres, using Equations 8-13 of Cases 3 and 4. 

Finally, it is possible to combine all the equations 
for both the parallel-series and series-parallel cases to 
predict final values for the elastic constants of the 
fibres. Where the bounds are close together (for the 
polyethylene fibre), only a single value is quoted: for 



the carbon fibre, the predicted bounds were, in some 
cases, further apart and the actual bounding values are 
therefore quoted. 

3. Experimental proeedure 
3.1. Composites preparation 
Composites were prepared following standard pro- 
cedures adopted in our laboratory and described in 
detail elsewhere 1-9, 10]. The method employed was 
a standard prepreg route, using a drum winder and 
a partially cured epoxy resin, Fibredux 913 made by 
Ciba Geigy. For the polyethylene fibre/epoxy resin 
composites, the fibre was a high-modulus polyethy- 
lene fibre produced by the melt spinning/hot drawing 
route invented at Leeds University and commercial- 
ized by Snia Fibre (Tenfor fibres) and more recently by 
Hoechst-Celanese (Certran fibres). Composites were 
made at fibre volume fractions of nominally 40 %, 
50%, 55%, 60% and 65%. For the carbon fibre/ep- 
oxy composite, the fibre used was Courtaulds HM370: 
only one fibre volume fraction, nominally 50 %, was 
manufactured. 

3.2. M e a s u r e m e n t  of f ibre e las t ic  c o n s t a n t s  
The elastic properties of the composites were meas- 
ured using an ultrasonic velocity technique. In this 
method, originally published by NPL J i l l ,  and de- 
veloped further by Dyer et al. [3] and Woolf [12], the 
basic measurement is the time of flight for a sound 
pulse to travel through the sample. Measurement of 
the travel time at various angles of incidence allows 
the four elastic constants in the plane of sound propa- 
gation to be determined. By propagation in different 
planes, a full set of elastic constants can be determined. 
For the transversely isotropic composite samples un- 
der consideration here, only two experiments (propa- 
gation in the 23 and 12 planes) were needed to calcu- 
late the five independent elastic constants needed for 
a full description of the composite elastic behaviour. 
A more detailed account of this technique can be 
found elsewhere [3]. 

4. Results 
4.1. Polyethylene fibre/epoxy composites 
In order to assess the accuracy of the numerical tech- 
nique presented in this paper for determining fibre 
elastic constants, it is necessary to have a fibre whose 
elastic properties are known. In a recent paper [13] we 
described how the technique of hot compaction, in- 
vented at Leeds University, can be used to determine 
the elastic properties of a range of thermoplastic poly- 
mer fibres. In essence, the process works by "selective- 
ly melting" a small fraction of the outer surface of 
a polymer fibre which, on cooling, recrystallizes to 
bind the structure together [141. This process allows 
very high fibre volume fraction samples to be produ- 
ced, close to the theoretical limit of 91%. By manufac- 
turing a range of samples of different volume fractions, 
and measuring the elastic properties of the compacted 
materials, it is possible to extrapolate to 100% fibre 

TABLE I A comparison of the elastic properties of high-modulus 
melt-spun polyethylene fibre determined by the numerical proced- 
ure and by the hot compaction route 

Numerical procedure Hot compaction 

E33 (GPa) 66.9 ___ 6.1 68.5 
Ell  (GPa) 4.49 • 0.31 4.71 
v13 0.50 • 0.07 0.47 
v12 0.55 • 0.02 0.58 
G13 (GPa) 1.65 • 0.17 1.65 

TABLE II A comparison of the elastic properties of HM370 
carbon fibre determined by the numerical procedure and by the best 
set of data combining manufacturers' data and the method of Smith 
[153 

Numerical procedure Manufacturers' 
data, Smith's 
method 

Lower Upper Average 
bound bound 

E33 (GPa) 381.4 381.6 381.5 370 
Ell  (GPa) 13.0 13.7 13.35 12 
vl 3 0.41 0.41 0.41 0.35 
v12 0.55 0.59 0.57 0.48 
G13 (GPa) 11.8 23.0 17.4 17.5 

properties. This procedure is very similar to that of 
Dean and Turner [8], described in Section 1, in their 
work on carbon fibre composites. The advantage of 
the compaction process is that very high fibre volume 
fractions can be achieved, giving a high degree of 
accuracy to the extrapolation procedure. 

Table I shows a comparison of the elastic properties 
of the melt-spun high-modulus polyethylene fibre, de- 
termined by the numerical technique described in this 
paper and the hot compaction process. The numerical 
technique shows results of measurements on five fibre 
volume fractions of polyethylene fibre/epoxy resin 
composites (42%, 51%, 56%, 66% and 67%). The 
agreement between the procedures is seen to be excel- 
lent, validating the new numerical technique. 

4.2. Carbon fibre/epoxy resin composite 
As a second test of the numerical method, an HM370 
carbon fibre/epoxy composite was evaluated. Again 
the advantage of this system is that the carbon fibre 
elastic constants are at least partly known. We have 
used this fibre before in our previous work I-4] evalu- 
ating different theoretical models for predicting com- 
posite properties. The carbon fibre elastic constants 
needed for the previous study were taken partly from 
the manufacturers' data sheets (longitudinal modulus, 
E33, and Poisson's ratio, v13), and partly by using 
a technique reported by Smith [15]. Smith showed 
that plotting graphs of each fibre elastic constant 
against the longitudinal modulus, E33, using all the 
available literature for carbon fibre properties, produ- 
ced reasonable correlations which could then be used 
to predict the unknown properties of a fibre in which 
only the longitudinal modulus was known. 

Table II shows a comparison between the elastic 
properties of the HM370 carbon fibre determined 
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from the numerical technique and using the graphical 
method of Smith. For the numerical method, both the 
bounds and the average of the bounds is shown. The 
agreement between the two predictions is seen to be 
good. The bounds produced by the numerical proced- 
ure were, in general, very close together, as was seen 
for the polyethylene fibre, apart from the prediction of 
the shear modulus, G13. 

5. Conclusions 
A new procedure for determining the elastic properties 
of a fibre from measurements on unidirectional com- 
posites, is described. Comparison with two known 
fibre systems, a polyethylene fibre/epoxy resin com- 
posite and an HM370 carbon fibre composite, sug- 
gests that the new numerical procedure is valid. It 
should now be possible, with some confidence, to use 
the procedure to determine the elastic properties of an 
unknown fibre. 
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